Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 9(10)2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1512715

ABSTRACT

The thymus is the main lymphoid organ that regulates the immune and endocrine systems by controlling thymic cell proliferation and differentiation. The gland is a primary lymphoid organ responsible for generating mature T cells into CD4+ or CD8+ single-positive (SP) T cells, contributing to cellular immunity. Regarding humoral immunity, the thymic plasma cells almost exclusively secrete IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Deformity in the thymus can lead to inflammatory diseases. Hassall's corpuscles' epithelial lining produces thymic stromal lymphopoietin, which induces differentiation of CDs thymocytes into regulatory T cells within the thymus medulla. Thymic B lymphocytes produce immunoglobulins and immunoregulating hormones, including thymosin. Modulation in T cell and naive T cells decrement due to thymus deformity induce alteration in the secretion of various inflammatory factors, resulting in multiple diseases. Influenza virus activates thymic CD4+ CD8+ thymocytes and a large amount of IFNγ. IFNs limit virus spread, enhance macrophages' phagocytosis, and promote the natural killer cell restriction activity against infected cells. Th2 lymphocytes-produced cytokine IL-4 can bind to antiviral INFγ, decreasing the cell susceptibility and downregulating viral receptors. COVID-19 epitopes (S, M, and N proteins) with ≥90% identity to the SARS-CoV sequence have been predicted. These epitopes trigger immunity for antibodies production. Boosting the immune system by improving thymus function can be a therapeutic strategy for preventing virus-related diseases. This review aims to summarize the endocrine-immunoregulatory functions of the thymus and the underlying mechanisms in the prevention of COVID-19.

2.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 06.
Article in English | MEDLINE | ID: covidwho-1011601

ABSTRACT

Since its identification in Wuhan, China, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has resulted in 46 million cases and more than one million deaths worldwide, as of 30 October 2020. Limited data exist on the magnitude and durability of antibodies generated by natural infection with SARS-CoV-2 and whether they can provide long-lasting immunity from reinfection. Vaccination has proven the most effective measure for controlling and preventing pandemics and, thus, development of a vaccine against COVID-19 is a top priority. However, the doses required to induce effective, long-lasting antibody responses against SARS-CoV-2 remain undetermined. Here, we present the development of SARS-CoV-2 vaccine candidates encoding the viral spike (S) gene, generated using plasmid (p)DNA technology, and we demonstrate the eliciting of S-specific antibodies in mice after three and four doses. The magnitude of binding and neutralizing antibody responses with three doses of synthetic, codon-optimized, full-length S (S.opt.FL) vaccine is comparable to that generated after four doses, suggesting that three doses are sufficient to elicit robust immune responses. Conversely, four doses of S1.opt pDNA vaccine, containing the S globular head, are required to elicit high levels of neutralizing antibodies. Furthermore, the S.opt.FL pDNA vaccine induces the highest serum levels of interferon (IFN)-γ, a marker for activation of cellular immune responses. Overall, our data show that three doses of S.FL pDNA vaccine elicit potent neutralizing antibody responses, with preclinical data that support the immunogenicity of these COVID-19 vaccine candidates and provide justification for further translational studies.

3.
Saudi J Biol Sci ; 28(3): 1978-1989, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1009875

ABSTRACT

SARS-CoV-2 is a type of Betacoronaviruses responsible for COVID-19 pandemic disease, with more than 1.745 million fatalities globally as of December-2020. Genetically, it is considered the second largest genome of all RNA viruses with a 5' cap and 3' poly-A tail. Phylogenetic analyses of coronaviruses reveal that SARS-CoV-2 is genetically closely related to the Bat-SARS Like-Corona virus (Bat-SL-Cov) with 96% whole-genome identity. SARS-CoV-2 genome consists of 15 ORFs coded into 29 proteins. At the 5' terminal of the genome, we have ORF1ab and ORF1a, which encode the 1ab and 1a polypeptides that are proteolytically cleaved into 16 different nonstructural proteins (NSPs). The 3' terminal of the genome represents four structural (spike, envelope, matrix, and nucleocapsid) and nine accessory (3a, 3b, 6, 7a, 7b, 8b, 9a, 9b, and orf10) proteins. As the number of COVID-19 patients increases dramatically worldwide, there is an urgent need to find a quick and sensitive diagnostic tool for controlling the outbreak of SARS-CoV-2 in the community. Today, molecular testing methods utilizing viral genetic material (e.g., PCR) represent the crucial diagnostic tool for the SARS-CoV-2 virus despite its low sensitivity in the early stage of viral infection. This review summarizes the genome composition and genetic characterization of the SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL